- variableThe name of the variable that this object applies to
C++ Type:AuxVariableName
Controllable:No
Description:The name of the variable that this object applies to
TimeDerivativeAux
Returns the time derivative of the specified variable/functor as an auxiliary variable.
The "factor" multiplies the output of the time derivative operation. The time derivative of the "factor" is not** computed.
For AD input objects such as:
variables
AD functions
AD functor material properties
an ADTimeDerivativeAux
should be created. The AD derivatives are however discarded when filling the auxiliary variable.
The TimeDerivativeAux
is restricted to constructs for which the time derivative is computed by MOOSE. Time derivative functions have not been implemented for all functor types.
Example input syntax
In this example, the TimeDerivativeAux
is used to output to auxiliary variables the time derivatives of variables and functions during a time dependent diffusion problem.
[AuxKernels]
# Time derivative of a nonlinear variable
# Time derivative of an aux variable is not currently supported
# in the Auxiliary system (only in nonlinear)
[var_derivative]
type = ADTimeDerivativeAux
variable = variable_derivative
functor = u
factor = 10
execute_on = 'TIMESTEP_END'
[]
# this places the derivative of a FE variable in a FV one
# let's output a warning
inactive = 'var_derivative_to_fv'
[var_derivative_to_fv]
type = ADTimeDerivativeAux
variable = variable_derivative_fv
functor = u
[]
# Time derivative of a function: using the functor system
# Time derivative of a functor material property is not currently supported
[function_derivative_quadrature_point]
type = TimeDerivativeAux
variable = function_derivative_qp
functor = 'some_function'
factor = 2
execute_on = 'INITIAL TIMESTEP_END'
[]
[function_derivative_element]
type = TimeDerivativeAux
variable = function_derivative_elem
functor = 'some_other_function'
factor = 2
execute_on = 'INITIAL TIMESTEP_END'
[]
[]
[AuxVariables]
[variable_derivative]
family = MONOMIAL
order = CONSTANT
[]
inactive = 'variable_derivative_fv'
[variable_derivative_fv]
family = MONOMIAL
order = CONSTANT
fv = true
[]
[function_derivative_qp]
family = MONOMIAL
order = FIRST
[]
[function_derivative_elem]
family = MONOMIAL
order = CONSTANT
[]
[]
[Functions]
# These functions have implemented time derivatives
[some_function]
type = ParsedFunction
value = t*(x+y)
[]
[some_other_function]
type = PiecewiseLinear
x = '0 0.05 0.15 0.25'
y = '1 2 3 4'
[]
[]
(../../../SoftwareDownloads/moose/test/tests/auxkernels/time_derivative_aux/test.i)Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this boundary condition applies
- check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
Default:True
C++ Type:bool
Controllable:No
Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
- execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, PRE_DISPLACE, ALWAYS.
Default:LINEAR TIMESTEP_END
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, PRE_DISPLACE, ALWAYS.
- factor1Factor to multiply the time derivative by
Default:1
C++ Type:MooseFunctorName
Controllable:No
Description:Factor to multiply the time derivative by
- functorFunctor to take the time derivative of
C++ Type:MooseFunctorName
Controllable:No
Description:Functor to take the time derivative of
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.