- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this boundary condition applies
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Controllable:No
Description:The name of the variable that this residual object operates on
SinDirichletBC
Imposes a time-varying essential boundary condition , where varies from an given initial value at time to a given final value over a specified duration.
Description
SinDirichletBC
is a NodalBC
which imposes a time-varying boundary value of the form
where and are the initial and final values of , respectively, and is the final time. These values are controlled by the initial
, final
, and duration
parameters, respectively. The value is applied on one or more sidesets specified by the boundary
parameter and does not vary in space. This type of boundary condition is applicable to time-varying PDEs, for example:
and is frequently used to "ramp" a difficult boundary condition to its final value over a short time interval, rather than imposing it instantaneously at time . This approach can make nonlinear solvers more robust by improving the initial guess used by the Newton iterations, as well as preventing the solver from converging to non-physical solutions in nonlinear PDEs.
Example Input Syntax
[BCs]
active = 'left right'
[./left]
type = SinDirichletBC
variable = u
boundary = 3
initial = 0.0
final = 1.0
duration = 10.0
[../]
[./right]
type = SinDirichletBC
variable = u
boundary = 1
initial = 1.0
final = 0.0
duration = 10.0
[../]
[]
(../../../SoftwareDownloads/moose/test/tests/bcs/sin_bc/sin_dirichlet_test.i)Input Parameters
- diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Controllable:No
Description:The displacements
- duration0
Default:0
C++ Type:double
Controllable:No
- final0
Default:0
C++ Type:double
Controllable:No
- initial0
Default:0
C++ Type:double
Controllable:No
- save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Controllable:No
Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystem timeThe tag for the matrices this Kernel should fill
Default:system time
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsresidualThe tag for the vectors this Kernel should fill
Default:residual
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the vectors this Kernel should fill