NodalEqualValueConstraint

Constrain two nodes to have identical values.

The constraint is imposed using a lagrange multiplier variable. The NodalEqualValueConstraint forms (part of) the equation for that variable, so its variable parameter is set to the lagrange multiplier scalar variable.

Constraining two nodes can be used to impose continuity conditions or to pin two independent systems on disjoint meshes together. The limitation to two nodes means that this kernel is not designed to work on sidesets or interfaces, except in 1D. To impose an equal value constraint on a sideset, please prefer the EqualValueConstraint.

Example input syntax

In this input file, a NodalEqualValueConstraint is used to impose an equality constraint between two disjoint line meshes.

[ScalarKernels]
  [./ced]
    type = NodalEqualValueConstraint
    variable = lm
    var = u
    boundary = '100 101'
  [../]
[]
(../../../SoftwareDownloads/moose/test/tests/mortar/1d/1d.i)

Input Parameters

  • varVariable(s) to put the constraint on

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:Variable(s) to put the constraint on

  • variableThe name of the variable that this residual object operates on

    C++ Type:NonlinearVariableName

    Controllable:No

    Description:The name of the variable that this residual object operates on

Required Parameters

  • boundaryThe list of boundary IDs from the mesh where this nodal kernel applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundary IDs from the mesh where this nodal kernel applies

  • nodesSupply nodes using node ids

    C++ Type:std::vector<unsigned long>

    Controllable:No

    Description:Supply nodes using node ids

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Tagging Parameters