- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this boundary condition applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Controllable:No
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- execute_onALWAYSThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
Default:ALWAYS
C++ Type:ExecFlagEnum
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- prop_namesThe names of the properties this material will have
C++ Type:std::vector<std::string>
Controllable:No
Description:The names of the properties this material will have
- prop_valuesThe corresponding names of the functors that are going to provide the values for the vector material properties
C++ Type:std::vector<MooseFunctorName>
Controllable:No
Description:The corresponding names of the functors that are going to provide the values for the vector material properties
GenericVectorFunctorMaterial
FunctorMaterial object for declaring vector properties that are populated by evaluation of functor (constants, functions, variables, matprops) object.
The functor system allows for using different functor types, functions, variables and material properties for example, for each component X, Y and Z of the vector functor material property.
This can be used to quickly create simple constant anisotropic material properties, for testing, for initial survey of a problem or simply because the material properties do not vary much over the domain explored by the simulation.
The non-functor equivalents of this material are GenericConstantVectorMaterial for constant values and GenericFunctionVectorMaterial.md
for functions.
By default this class caches function evaluations and clears the cache at the beginning of every time step. Cache clearing behavior can be controlled by setting the execute_on
parameter.
All AD-types of the components must match. Variables are automatically considered as AD functors, even auxiliary variables. The AD version of this material is ADGenericVectorFunctorMaterial
. Its inputs are a vector of AD functors and it creates AD vector functor material properties.
Example Input File Syntax
In this example, we create a GenericVectorFunctorMaterial
to generate an anisotropic vector diffusivity and then compute the integral of the diffusive flux through a specified boundary on the mesh.
[./mat_props_vector]
type = GenericConstantVectorMaterial
boundary = 'right top'
prop_names = diffusivity_vec
prop_values = '1 1.5 1'
[../]
(../../../SoftwareDownloads/moose/test/tests/postprocessors/side_diffusive_flux_integral/side_diffusive_flux_integral.i)In this example, we create a GenericVectorFunctorMaterial
for two anisotropic friction factors in a porous media flow simulation. Note the syntax for declaring two material properties and their values in the same material.
[darcy]
type = ADGenericVectorFunctorMaterial
prop_names = 'Darcy_coefficient Forchheimer_coefficient'
prop_values = '0.1 0.1 0.1 0.1 0.1 0.1'
[]
(../../../SoftwareDownloads/moose/modules/navier_stokes/test/tests/finite_volume/pins/channel-flow/2d-rc-friction.i)Input Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object