RinglebMeshGenerator

Creates a mesh for the Ringleb problem.

Overview

This mesh can be applied to a Ringleb problem. This problem tests the spatial accuracy of high-order methods. The flow is transonic and smooth. The geometry is also smooth, and high-order curved boundary representation appears to be critical.

Governing Equations

The governing equations are the 2D Euler equations with .

Geometry

Let be a streamline parameter, i.e., on each streamline. The two stream lines for the two wall boundaries are for the inner wall, and for the outer wall. Let be the velocity magnitude. For each fixed , , the variable varies between and . For each , define the speed of sound , density , pressure , and a quantity denoted by by:

For each pair , set:

Mesh Example

For example, let's consider the following input file:


[Mesh]
  [./ringleb]
    type = RinglebMeshGenerator
    kmin = 0.7
    num_k_pts = 9
    num_q_pts = 20
    kmax = 1.2
    n_extra_q_pts = 2
    gamma = 1.4
    triangles = true
  []
[]

The corresponding mesh looks like this:

Input Parameters

  • gammaGamma parameter

    C++ Type:double

    Controllable:No

    Description:Gamma parameter

  • kmaxValue of k on the inner wall.

    C++ Type:double

    Controllable:No

    Description:Value of k on the inner wall.

  • kminValue of k on the outer wall.

    C++ Type:double

    Controllable:No

    Description:Value of k on the outer wall.

  • n_extra_q_ptsHow many 'extra' points should be inserted in the final element *in addition to* the equispaced q points.

    C++ Type:int

    Controllable:No

    Description:How many 'extra' points should be inserted in the final element *in addition to* the equispaced q points.

  • num_k_ptsHow many points in the range k=(kmin, kmax).

    C++ Type:int

    Controllable:No

    Description:How many points in the range k=(kmin, kmax).

  • num_q_ptsHow many points to discretize the range q = (0.5, k) into.

    C++ Type:int

    Controllable:No

    Description:How many points to discretize the range q = (0.5, k) into.

Required Parameters

  • inflow_bid1The boundary id to use for the inflow

    Default:1

    C++ Type:short

    Controllable:No

    Description:The boundary id to use for the inflow

  • inner_wall_bid2The boundary id to use for the inner wall

    Default:2

    C++ Type:short

    Controllable:No

    Description:The boundary id to use for the inner wall

  • outer_wall_bid4The boundary id to use for the outer wall

    Default:4

    C++ Type:short

    Controllable:No

    Description:The boundary id to use for the outer wall

  • outflow_bid3The boundary id to use for the outflow

    Default:3

    C++ Type:short

    Controllable:No

    Description:The boundary id to use for the outflow

  • show_infoFalseWhether or not to show mesh info after generating the mesh (bounding box, element types, sidesets, nodesets, subdomains, etc)

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not to show mesh info after generating the mesh (bounding box, element types, sidesets, nodesets, subdomains, etc)

  • trianglesFalseIf true, all the quadrilateral elements will be split into triangles

    Default:False

    C++ Type:bool

    Controllable:No

    Description:If true, all the quadrilateral elements will be split into triangles

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Set the enabled status of the MooseObject.

Advanced Parameters