LayeredSideAverage

Computes side averages of a variable storing partial sums for the specified number of intervals in a direction (x,y,z).

How to define the layers

The parameters to define layers are explained in the LayeredAverage documentation. The "block" parameter is no longer allowed to define the layers, unless the "boundary" parameter is not set.

How to retrieve the result

The result of a LayeredSideAverage computation can be saved in an auxiliary variable using a SpatialUserObjectAux. It can be output to a CSV file using a SpatialUserObjectVectorPostprocessor.

Additional computation options

Additional options for performing averages, interpolations and cumulative sums are explained in the LayeredAverage documentation.

Example input syntax

In this example, the average of variable u is taken over the boundary right in the y direction over three layers, on every linear iteration. The result of this averaging is stored in the variable layered_integral using a SpatialUserObjectAux at the end of every time step, and output to a CSV file using a SpatialUserObjectVectorPostprocessor.

[UserObjects]
  [./layered_side_average]
    type = LayeredSideAverage
    direction = y
    num_layers = 3
    variable = u
    execute_on = linear
    boundary = right
  [../]
[]

[AuxKernels]
  [./lsia]
    type = SpatialUserObjectAux
    variable = layered_side_average
    boundary = right
    user_object = layered_side_average
  [../]
[]

[VectorPostprocessors]
  [avg]
    type = SpatialUserObjectVectorPostprocessor
    userobject = layered_side_average
  []
[]
(../../../SoftwareDownloads/moose/test/tests/userobjects/layered_side_integral/layered_side_average.i)

Input Parameters

  • boundaryThe list of boundary IDs from the mesh where this boundary condition applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundary IDs from the mesh where this boundary condition applies

  • directionThe direction of the layers.

    C++ Type:MooseEnum

    Options:x, y, z

    Controllable:No

    Description:The direction of the layers.

  • variableThe name of the variable that this boundary condition applies to

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The name of the variable that this boundary condition applies to

Required Parameters

  • average_radius1When using 'average' sampling this is how the number of values both above and below the layer that will be averaged.

    Default:1

    C++ Type:unsigned int

    Controllable:No

    Description:When using 'average' sampling this is how the number of values both above and below the layer that will be averaged.

  • blockThe list of block ids (SubdomainID) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of block ids (SubdomainID) that this object will be applied

  • boundsThe 'bounding' positions of the layers i.e.: '0, 1.2, 3.7, 4.2' will mean 3 layers between those positions.

    C++ Type:std::vector<double>

    Controllable:No

    Description:The 'bounding' positions of the layers i.e.: '0, 1.2, 3.7, 4.2' will mean 3 layers between those positions.

  • cumulativeFalseWhen true the value in each layer is the sum of the values up to and including that layer

    Default:False

    C++ Type:bool

    Controllable:No

    Description:When true the value in each layer is the sum of the values up to and including that layer

  • direction_maxMaximum coordinate along 'direction' that bounds the layers

    C++ Type:double

    Controllable:No

    Description:Maximum coordinate along 'direction' that bounds the layers

  • direction_minMinimum coordinate along 'direction' that bounds the layers

    C++ Type:double

    Controllable:No

    Description:Minimum coordinate along 'direction' that bounds the layers

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.

  • layer_bounding_blockList of block ids (SubdomainID) that are used to determine the upper and lower geometric bounds for all layers. If this is not specified, the ids specified in 'block' are used for this purpose.

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:List of block ids (SubdomainID) that are used to determine the upper and lower geometric bounds for all layers. If this is not specified, the ids specified in 'block' are used for this purpose.

  • num_layersThe number of layers.

    C++ Type:unsigned int

    Controllable:No

    Description:The number of layers.

  • positive_cumulative_directionTrueWhen 'cumulative' is true, whether the direction for summing the cumulative value is the positive direction or negative direction

    Default:True

    C++ Type:bool

    Controllable:No

    Description:When 'cumulative' is true, whether the direction for summing the cumulative value is the positive direction or negative direction

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • sample_typedirectHow to sample the layers. 'direct' means get the value of the layer the point falls in directly (or average if that layer has no value). 'interpolate' does a linear interpolation between the two closest layers. 'average' averages the two closest layers.

    Default:direct

    C++ Type:MooseEnum

    Options:direct, interpolate, average

    Controllable:No

    Description:How to sample the layers. 'direct' means get the value of the layer the point falls in directly (or average if that layer has no value). 'interpolate' does a linear interpolation between the two closest layers. 'average' averages the two closest layers.

Optional Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Controllable:No

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • force_postauxFalseForces the UserObject to be executed in POSTAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in POSTAUX

  • force_preauxFalseForces the UserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREAUX

  • force_preicFalseForces the UserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREIC during initial setup

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters