NearestPointLayeredSideDiffusiveFluxAverage

The domain is virtually divided into a number of layered subdivision according to the nearest points and the layering direction provided by users. And then the layered side average diffusive flux is computed for the sides on each individual subdivision separately.

Compute layered side diffusive flux averages for nearest-point based subdivisions

Input Parameters

  • boundaryThe list of boundary IDs from the mesh where this boundary condition applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundary IDs from the mesh where this boundary condition applies

  • diffusivityThe name of the diffusivity material property that will be used in the flux computation.

    C++ Type:std::string

    Controllable:No

    Description:The name of the diffusivity material property that will be used in the flux computation.

  • directionThe direction of the layers.

    C++ Type:MooseEnum

    Options:x, y, z

    Controllable:No

    Description:The direction of the layers.

  • variableThe name of the variable that this boundary condition applies to

    C++ Type:std::vector<VariableName>

    Controllable:No

    Description:The name of the variable that this boundary condition applies to

Required Parameters

  • average_radius1When using 'average' sampling this is how the number of values both above and below the layer that will be averaged.

    Default:1

    C++ Type:unsigned int

    Controllable:No

    Description:When using 'average' sampling this is how the number of values both above and below the layer that will be averaged.

  • axiszThe axis around which the radius is determined

    Default:z

    C++ Type:MooseEnum

    Options:x, y, z

    Controllable:No

    Description:The axis around which the radius is determined

  • blockThe list of block ids (SubdomainID) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of block ids (SubdomainID) that this object will be applied

  • boundsThe 'bounding' positions of the layers i.e.: '0, 1.2, 3.7, 4.2' will mean 3 layers between those positions.

    C++ Type:std::vector<double>

    Controllable:No

    Description:The 'bounding' positions of the layers i.e.: '0, 1.2, 3.7, 4.2' will mean 3 layers between those positions.

  • cumulativeFalseWhen true the value in each layer is the sum of the values up to and including that layer

    Default:False

    C++ Type:bool

    Controllable:No

    Description:When true the value in each layer is the sum of the values up to and including that layer

  • direction_maxMaximum coordinate along 'direction' that bounds the layers

    C++ Type:double

    Controllable:No

    Description:Maximum coordinate along 'direction' that bounds the layers

  • direction_minMinimum coordinate along 'direction' that bounds the layers

    C++ Type:double

    Controllable:No

    Description:Minimum coordinate along 'direction' that bounds the layers

  • dist_normpointTo specify whether the distance is defined based on point or radius

    Default:point

    C++ Type:MooseEnum

    Options:point, radius

    Controllable:No

    Description:To specify whether the distance is defined based on point or radius

  • execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.

    Default:TIMESTEP_END

    C++ Type:ExecFlagEnum

    Options:NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, TIMESTEP_END, TIMESTEP_BEGIN, FINAL, CUSTOM, ALWAYS.

  • layer_bounding_blockList of block ids (SubdomainID) that are used to determine the upper and lower geometric bounds for all layers. If this is not specified, the ids specified in 'block' are used for this purpose.

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:List of block ids (SubdomainID) that are used to determine the upper and lower geometric bounds for all layers. If this is not specified, the ids specified in 'block' are used for this purpose.

  • num_layersThe number of layers.

    C++ Type:unsigned int

    Controllable:No

    Description:The number of layers.

  • pointsComputations will be lumped into values at these points.

    C++ Type:std::vector<libMesh::Point>

    Controllable:No

    Description:Computations will be lumped into values at these points.

  • points_fileA filename that should be looked in for points. Each set of 3 values in that file will represent a Point. This and 'points' cannot be both supplied.

    C++ Type:FileName

    Controllable:No

    Description:A filename that should be looked in for points. Each set of 3 values in that file will represent a Point. This and 'points' cannot be both supplied.

  • positive_cumulative_directionTrueWhen 'cumulative' is true, whether the direction for summing the cumulative value is the positive direction or negative direction

    Default:True

    C++ Type:bool

    Controllable:No

    Description:When 'cumulative' is true, whether the direction for summing the cumulative value is the positive direction or negative direction

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • sample_typedirectHow to sample the layers. 'direct' means get the value of the layer the point falls in directly (or average if that layer has no value). 'interpolate' does a linear interpolation between the two closest layers. 'average' averages the two closest layers.

    Default:direct

    C++ Type:MooseEnum

    Options:direct, interpolate, average

    Controllable:No

    Description:How to sample the layers. 'direct' means get the value of the layer the point falls in directly (or average if that layer has no value). 'interpolate' does a linear interpolation between the two closest layers. 'average' averages the two closest layers.

Optional Parameters

  • allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

    Default:False

    C++ Type:bool

    Controllable:No

    Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • force_postauxFalseForces the UserObject to be executed in POSTAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in POSTAUX

  • force_preauxFalseForces the UserObject to be executed in PREAUX

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREAUX

  • force_preicFalseForces the UserObject to be executed in PREIC during initial setup

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Forces the UserObject to be executed in PREIC during initial setup

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

References

No citations exist within this document.