- EEnergy Barrier in Arhhenious Expression
C++ Type:double
Description:Energy Barrier in Arhhenious Expression
- TTemperature
C++ Type:std::vector<VariableName>
Description:Temperature
- boundaryThe list of boundary IDs from the mesh where this boundary condition applies
C++ Type:std::vector<BoundaryName>
Description:The list of boundary IDs from the mesh where this boundary condition applies
- k0pre-exponent factor
C++ Type:double
Description:pre-exponent factor
- scale_factorscale factor
C++ Type:double
Description:scale factor
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Description:The name of the variable that this residual object operates on
PfcFunctionFluxRampBC
The PfcFunctionFluxRampBC has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
Imposes the essential boundary condition , where is a constant calculated assuming the recombination fluxquickly becomes equal to the incident flux. The recombination term is calculated using the simulation temperature and the pre-exponent and Energy values provided
Overview
This option implements the integrated boundary condition for the special case of an incident particle flux with surface recombination as shown in equation Eq. (1).
(1)
Input parameters must be supplied for and with a function describing the variation of the incident flux, , (in time and/or space). Temperature is taken from a coupled variable and a scale factor must be provided for the conversion of concentration units from to atomic fraction.
Example Input File Syntax
Input Parameters
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Description:The displacements
- function0The function describing the Dirichlet condition
Default:0
C++ Type:FunctionName
Description:The function describing the Dirichlet condition
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Description:The tag for the vectors this Kernel should fill